Fixes Bug 639584 - initial emission of GtkWidget:style-set is
not happening.
GtkWidget was filtering out ::style-updated (and ::style-set)
emissions until the widget was realized in order to avoid often
useless updates during widget construction and placing.
This is now done instead until the widget has a parent/screen,
which ensures the initial emission happen prior to the first
size negociation, while still filtering out all early emissions
during construction.
Writing onto the passed-in GtkStateData could cause changes that would
propagate to siblings, as the data was not reset again.
By copying the data structure, this is avoided and the proper values are
passed to sibling widgets.
GtkWidget now parses custom attributes like
<style>
<class name="dark-label"/>
<class name="big-heading"/>
</style>
to add style classes to widgets.
https://bugzilla.gnome.org/show_bug.cgi?id=643347
Sensitivity changes were not properly propagated down the
hierarchy. There were two issues here:
a) correctly identifying when a state change request affects
sensitivity
b) not filtering out sensitivity in gtk_widget_propagate_state(),
since gtk_widget_set_sensitivity() uses that to do its work
https://bugzilla.gnome.org/show_bug.cgi?id=641431
Optimized GtkSizeGroup code that is invoked for every queued resize
and every request that is not previously cached by trading qdata on
widgets for 3 extra bitfields on the GtkWidgetPrivate structure.
It is used to get the default providers, without them
the style context can't do much. A check for NULL screen
is done before any sensitive call to
gtk_style_context_set_screen(), in the hope that any widget
will open the display before doing anything related to
styling. Fixes bug #641429, reported by Bastien Nocera.
This management is better done per-widget rather than per-screen,
as windows being destroyed won't trigger a leave notify for the
devices on top of it, and this information is too transitive
to keep weak refs and such.
This fixes the critical warning seen in gtk/tests/testing.
Instead of checking if klass->get_request_mode is != NULL from
the gtk_widget_get_request_mode() api, this allows classes to
trust that there is a default implementation and chain up (specifically
added this for gtkmm wrapper objects).
GtkStateType was generally used as an index in GtkStyle color arrays, so
bigger values will cause invalid memory accesses in widgets that are still
doing that. this was seen in focused GtkIconViews for example
together with commit 8903615a34, this finally fixes bug #640282.
Insensitivity is handled separatedly in _gtk_widget_update_state_flags(),
but the insensitive flag is mistakenly unset afterwards if clear is TRUE
in gtk_widget_set_state_flags().
There is only one widget supposed to have the focused flag at a given time,
so avoid propagating the state down the hierarchy, the focused flag is now
also set in _gtk_widget_set_has_focus().
This function is a more convenient variant than
gtk_widget_set_device_events(), as it will
1) perform changes down a widget hierarchy, to
all windows.
1) use the same event mask than gdk_window_get_events()
This function takes a region ID and cancels all animations
on or beneath that region (as in push/pop_animatable_region).
First user of this is GtkWidget itself, so unmapped widgets
have looping animations cancelled. Fixes bug #638119, reported
by Jesse van den Kieboom.
Now GtkWindow takes some measures when setting toplevelness:
- When a window becomes toplevel after being embedded it saves
the visibility state and reshow's itself so that the window
re-realizes and presents itself again automatically
- When emitting hierarchy-changed, synthetically mark the toplevel
as not anchored, this allows the hierarchy changed propagation to
recurse properly.
GtkWidget also takes care to unset the parent window *after* unparenting
the widget and after emitting the heirarhcy changed that leaves a NULL
toplevel.
That means there are now 2 cycles of "hierarchy-changed" when removing
an embedded toplevel from a parent, first one that makes the new toplevel
a NULL one (since the toplevel flag is not yet restored), the second cycle
makes the removed window toplevel again when setting the parent window
to NULL.