Files
gimp/app/core/gimp-transform-utils.c
Ell 17ec3d130e app: fix gimp_transform_matrix_generic()
When the resulting matrix transforms all input points behind the
camera, negate the matrix, instead of failing, which results in a
matrix that transforms the input points to the corresponding points
in front of the camera.  This avoids rejecting certain valid
transforms as invalid, in the generic transform tools (unified,
perspective, and handle transform).

Make the number of input and output points explicit in the
function's signature, and add comments.
2018-01-31 10:11:55 -05:00

629 lines
18 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995-2001 Spencer Kimball, Peter Mattis, and others
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <glib-object.h>
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "gimp-transform-utils.h"
#define EPSILON 1e-6
void
gimp_transform_get_rotate_center (gint x,
gint y,
gint width,
gint height,
gboolean auto_center,
gdouble *center_x,
gdouble *center_y)
{
g_return_if_fail (center_x != NULL);
g_return_if_fail (center_y != NULL);
if (auto_center)
{
*center_x = (gdouble) x + (gdouble) width / 2.0;
*center_y = (gdouble) y + (gdouble) height / 2.0;
}
}
void
gimp_transform_get_flip_axis (gint x,
gint y,
gint width,
gint height,
GimpOrientationType flip_type,
gboolean auto_center,
gdouble *axis)
{
g_return_if_fail (axis != NULL);
if (auto_center)
{
switch (flip_type)
{
case GIMP_ORIENTATION_HORIZONTAL:
*axis = ((gdouble) x + (gdouble) width / 2.0);
break;
case GIMP_ORIENTATION_VERTICAL:
*axis = ((gdouble) y + (gdouble) height / 2.0);
break;
default:
g_return_if_reached ();
break;
}
}
}
void
gimp_transform_matrix_flip (GimpMatrix3 *matrix,
GimpOrientationType flip_type,
gdouble axis)
{
g_return_if_fail (matrix != NULL);
switch (flip_type)
{
case GIMP_ORIENTATION_HORIZONTAL:
gimp_matrix3_translate (matrix, - axis, 0.0);
gimp_matrix3_scale (matrix, -1.0, 1.0);
gimp_matrix3_translate (matrix, axis, 0.0);
break;
case GIMP_ORIENTATION_VERTICAL:
gimp_matrix3_translate (matrix, 0.0, - axis);
gimp_matrix3_scale (matrix, 1.0, -1.0);
gimp_matrix3_translate (matrix, 0.0, axis);
break;
case GIMP_ORIENTATION_UNKNOWN:
break;
}
}
void
gimp_transform_matrix_flip_free (GimpMatrix3 *matrix,
gdouble x1,
gdouble y1,
gdouble x2,
gdouble y2)
{
gdouble angle;
g_return_if_fail (matrix != NULL);
angle = atan2 (y2 - y1, x2 - x1);
gimp_matrix3_identity (matrix);
gimp_matrix3_translate (matrix, -x1, -y1);
gimp_matrix3_rotate (matrix, -angle);
gimp_matrix3_scale (matrix, 1.0, -1.0);
gimp_matrix3_rotate (matrix, angle);
gimp_matrix3_translate (matrix, x1, y1);
}
void
gimp_transform_matrix_rotate (GimpMatrix3 *matrix,
GimpRotationType rotate_type,
gdouble center_x,
gdouble center_y)
{
gdouble angle = 0;
switch (rotate_type)
{
case GIMP_ROTATE_90:
angle = G_PI_2;
break;
case GIMP_ROTATE_180:
angle = G_PI;
break;
case GIMP_ROTATE_270:
angle = - G_PI_2;
break;
}
gimp_transform_matrix_rotate_center (matrix, center_x, center_y, angle);
}
void
gimp_transform_matrix_rotate_rect (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
gdouble angle)
{
gdouble center_x;
gdouble center_y;
g_return_if_fail (matrix != NULL);
center_x = (gdouble) x + (gdouble) width / 2.0;
center_y = (gdouble) y + (gdouble) height / 2.0;
gimp_matrix3_translate (matrix, -center_x, -center_y);
gimp_matrix3_rotate (matrix, angle);
gimp_matrix3_translate (matrix, +center_x, +center_y);
}
void
gimp_transform_matrix_rotate_center (GimpMatrix3 *matrix,
gdouble center_x,
gdouble center_y,
gdouble angle)
{
g_return_if_fail (matrix != NULL);
gimp_matrix3_translate (matrix, -center_x, -center_y);
gimp_matrix3_rotate (matrix, angle);
gimp_matrix3_translate (matrix, +center_x, +center_y);
}
void
gimp_transform_matrix_scale (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
gdouble t_x,
gdouble t_y,
gdouble t_width,
gdouble t_height)
{
gdouble scale_x = 1.0;
gdouble scale_y = 1.0;
g_return_if_fail (matrix != NULL);
if (width > 0)
scale_x = t_width / (gdouble) width;
if (height > 0)
scale_y = t_height / (gdouble) height;
gimp_matrix3_identity (matrix);
gimp_matrix3_translate (matrix, -x, -y);
gimp_matrix3_scale (matrix, scale_x, scale_y);
gimp_matrix3_translate (matrix, t_x, t_y);
}
void
gimp_transform_matrix_shear (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
GimpOrientationType orientation,
gdouble amount)
{
gdouble center_x;
gdouble center_y;
g_return_if_fail (matrix != NULL);
if (width == 0)
width = 1;
if (height == 0)
height = 1;
center_x = (gdouble) x + (gdouble) width / 2.0;
center_y = (gdouble) y + (gdouble) height / 2.0;
gimp_matrix3_identity (matrix);
gimp_matrix3_translate (matrix, -center_x, -center_y);
if (orientation == GIMP_ORIENTATION_HORIZONTAL)
gimp_matrix3_xshear (matrix, amount / height);
else
gimp_matrix3_yshear (matrix, amount / width);
gimp_matrix3_translate (matrix, +center_x, +center_y);
}
void
gimp_transform_matrix_perspective (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
gdouble t_x1,
gdouble t_y1,
gdouble t_x2,
gdouble t_y2,
gdouble t_x3,
gdouble t_y3,
gdouble t_x4,
gdouble t_y4)
{
GimpMatrix3 trafo;
gdouble scalex;
gdouble scaley;
g_return_if_fail (matrix != NULL);
scalex = scaley = 1.0;
if (width > 0)
scalex = 1.0 / (gdouble) width;
if (height > 0)
scaley = 1.0 / (gdouble) height;
gimp_matrix3_translate (matrix, -x, -y);
gimp_matrix3_scale (matrix, scalex, scaley);
/* Determine the perspective transform that maps from
* the unit cube to the transformed coordinates
*/
{
gdouble dx1, dx2, dx3, dy1, dy2, dy3;
dx1 = t_x2 - t_x4;
dx2 = t_x3 - t_x4;
dx3 = t_x1 - t_x2 + t_x4 - t_x3;
dy1 = t_y2 - t_y4;
dy2 = t_y3 - t_y4;
dy3 = t_y1 - t_y2 + t_y4 - t_y3;
/* Is the mapping affine? */
if ((dx3 == 0.0) && (dy3 == 0.0))
{
trafo.coeff[0][0] = t_x2 - t_x1;
trafo.coeff[0][1] = t_x4 - t_x2;
trafo.coeff[0][2] = t_x1;
trafo.coeff[1][0] = t_y2 - t_y1;
trafo.coeff[1][1] = t_y4 - t_y2;
trafo.coeff[1][2] = t_y1;
trafo.coeff[2][0] = 0.0;
trafo.coeff[2][1] = 0.0;
}
else
{
gdouble det1, det2;
det1 = dx3 * dy2 - dy3 * dx2;
det2 = dx1 * dy2 - dy1 * dx2;
trafo.coeff[2][0] = (det2 == 0.0) ? 1.0 : det1 / det2;
det1 = dx1 * dy3 - dy1 * dx3;
trafo.coeff[2][1] = (det2 == 0.0) ? 1.0 : det1 / det2;
trafo.coeff[0][0] = t_x2 - t_x1 + trafo.coeff[2][0] * t_x2;
trafo.coeff[0][1] = t_x3 - t_x1 + trafo.coeff[2][1] * t_x3;
trafo.coeff[0][2] = t_x1;
trafo.coeff[1][0] = t_y2 - t_y1 + trafo.coeff[2][0] * t_y2;
trafo.coeff[1][1] = t_y3 - t_y1 + trafo.coeff[2][1] * t_y3;
trafo.coeff[1][2] = t_y1;
}
trafo.coeff[2][2] = 1.0;
}
gimp_matrix3_mult (&trafo, matrix);
}
/* modified gaussian algorithm
* solves a system of linear equations
*
* Example:
* 1x + 2y + 4z = 25
* 2x + 1y = 4
* 3x + 5y + 2z = 23
* Solution: x=1, y=2, z=5
*
* Input:
* matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 }
* s = 3 (Number of variables)
* Output:
* return value == TRUE (TRUE, if there is a single unique solution)
* solution == { 1,2,5 } (if the return value is FALSE, the content
* of solution is of no use)
*/
static gboolean
mod_gauss (gdouble matrix[],
gdouble solution[],
gint s)
{
gint p[s]; /* row permutation */
gint i, j, r, temp;
gdouble q;
gint t = s + 1;
for (i = 0; i < s; i++)
{
p[i] = i;
}
for (r = 0; r < s; r++)
{
/* make sure that (r,r) is not 0 */
if (fabs (matrix[p[r] * t + r]) <= EPSILON)
{
/* we need to permutate rows */
for (i = r + 1; i <= s; i++)
{
if (i == s)
{
/* if this happens, the linear system has zero or
* more than one solutions.
*/
return FALSE;
}
if (fabs (matrix[p[i] * t + r]) > EPSILON)
break;
}
temp = p[r];
p[r] = p[i];
p[i] = temp;
}
/* make (r,r) == 1 */
q = 1.0 / matrix[p[r] * t + r];
matrix[p[r] * t + r] = 1.0;
for (j = r + 1; j < t; j++)
{
matrix[p[r] * t + j] *= q;
}
/* make that all entries in column r are 0 (except (r,r)) */
for (i = 0; i < s; i++)
{
if (i == r)
continue;
for (j = r + 1; j < t ; j++)
{
matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r];
}
/* we don't need to execute the following line
* since we won't access this element again:
*
* matrix[p[i] * t + r] = 0.0;
*/
}
}
for (i = 0; i < s; i++)
{
solution[i] = matrix[p[i] * t + s];
}
return TRUE;
}
/* multiplies 'matrix' by the matrix that transforms a set of 4 'input_points'
* to corresponding 'output_points', if such matrix exists, and is valid (i.e.,
* keeps the output points in front of the camera).
*
* returns TRUE if successful.
*/
gboolean
gimp_transform_matrix_generic (GimpMatrix3 *matrix,
const GimpVector2 input_points[4],
const GimpVector2 output_points[4])
{
GimpMatrix3 trafo;
gdouble coeff[8 * 9];
gboolean negative;
gint i;
g_return_val_if_fail (matrix != NULL, FALSE);
g_return_val_if_fail (input_points != NULL, FALSE);
g_return_val_if_fail (output_points != NULL, FALSE);
/* find the matrix that transforms 'input_points' to 'output_points', whose
* (3, 3) coeffcient is 1, by solving a system of linear equations whose
* solution is the remaining 8 coefficients.
*/
for (i = 0; i < 4; i++)
{
coeff[i * 9 + 0] = input_points[i].x;
coeff[i * 9 + 1] = input_points[i].y;
coeff[i * 9 + 2] = 1.0;
coeff[i * 9 + 3] = 0.0;
coeff[i * 9 + 4] = 0.0;
coeff[i * 9 + 5] = 0.0;
coeff[i * 9 + 6] = -input_points[i].x * output_points[i].x;
coeff[i * 9 + 7] = -input_points[i].y * output_points[i].x;
coeff[i * 9 + 8] = output_points[i].x;
coeff[(i + 4) * 9 + 0] = 0.0;
coeff[(i + 4) * 9 + 1] = 0.0;
coeff[(i + 4) * 9 + 2] = 0.0;
coeff[(i + 4) * 9 + 3] = input_points[i].x;
coeff[(i + 4) * 9 + 4] = input_points[i].y;
coeff[(i + 4) * 9 + 5] = 1.0;
coeff[(i + 4) * 9 + 6] = -input_points[i].x * output_points[i].y;
coeff[(i + 4) * 9 + 7] = -input_points[i].y * output_points[i].y;
coeff[(i + 4) * 9 + 8] = output_points[i].y;
}
/* if there is no solution, bail */
if (! mod_gauss (coeff, (gdouble *) trafo.coeff, 8))
return FALSE;
trafo.coeff[2][2] = 1.0;
/* make sure that none of the input points maps to a point at infinity, and
* that all output points are on the same side of the camera.
*/
for (i = 0; i < 4; i++)
{
gdouble w;
gboolean neg;
w = trafo.coeff[2][0] * input_points[i].x +
trafo.coeff[2][1] * input_points[i].y +
trafo.coeff[2][2];
if (fabs (w) <= EPSILON)
return FALSE;
neg = (w < 0.0);
if (i == 0)
negative = neg;
else if (neg != negative)
return FALSE;
}
/* if the output points are all behind the camera, negate the matrix, which
* would map the input points to the corresponding points in front of the
* camera.
*/
if (negative)
{
gint r;
gint c;
for (r = 0; r < 3; r++)
{
for (c = 0; c < 3; c++)
{
trafo.coeff[r][c] = -trafo.coeff[r][c];
}
}
}
/* append the transformation to 'matrix' */
gimp_matrix3_mult (&trafo, matrix);
return TRUE;
}
gboolean
gimp_transform_polygon_is_convex (gdouble x1,
gdouble y1,
gdouble x2,
gdouble y2,
gdouble x3,
gdouble y3,
gdouble x4,
gdouble y4)
{
gdouble z1, z2, z3, z4;
/* We test if the transformed polygon is convex. if z1 and z2 have
* the same sign as well as z3 and z4 the polygon is convex.
*/
z1 = ((x2 - x1) * (y4 - y1) -
(x4 - x1) * (y2 - y1));
z2 = ((x4 - x1) * (y3 - y1) -
(x3 - x1) * (y4 - y1));
z3 = ((x4 - x2) * (y3 - y2) -
(x3 - x2) * (y4 - y2));
z4 = ((x3 - x2) * (y1 - y2) -
(x1 - x2) * (y3 - y2));
return (z1 * z2 > 0) && (z3 * z4 > 0);
}
void
gimp_transform_polygon (const GimpMatrix3 *matrix,
const GimpVector2 *vertices,
gint n_vertices,
gboolean closed,
GimpVector2 *t_vertices,
gint *n_t_vertices)
{
GimpVector3 curr;
gboolean curr_visible;
gint i;
g_return_if_fail (matrix != NULL);
g_return_if_fail (vertices != NULL);
g_return_if_fail (n_vertices >= 0);
g_return_if_fail (t_vertices != NULL);
g_return_if_fail (n_t_vertices != NULL);
*n_t_vertices = 0;
if (n_vertices == 0)
return;
curr.x = matrix->coeff[0][0] * vertices[0].x +
matrix->coeff[0][1] * vertices[0].y +
matrix->coeff[0][2];
curr.y = matrix->coeff[1][0] * vertices[0].x +
matrix->coeff[1][1] * vertices[0].y +
matrix->coeff[1][2];
curr.z = matrix->coeff[2][0] * vertices[0].x +
matrix->coeff[2][1] * vertices[0].y +
matrix->coeff[2][2];
curr_visible = (curr.z >= GIMP_TRANSFORM_NEAR_Z);
for (i = 0; i < n_vertices; i++)
{
if (curr_visible)
{
t_vertices[(*n_t_vertices)++] = (GimpVector2) { curr.x / curr.z,
curr.y / curr.z };
}
if (i < n_vertices - 1 || closed)
{
GimpVector3 next;
gboolean next_visible;
gint j = (i + 1) % n_vertices;
next.x = matrix->coeff[0][0] * vertices[j].x +
matrix->coeff[0][1] * vertices[j].y +
matrix->coeff[0][2];
next.y = matrix->coeff[1][0] * vertices[j].x +
matrix->coeff[1][1] * vertices[j].y +
matrix->coeff[1][2];
next.z = matrix->coeff[2][0] * vertices[j].x +
matrix->coeff[2][1] * vertices[j].y +
matrix->coeff[2][2];
next_visible = (next.z >= GIMP_TRANSFORM_NEAR_Z);
if (next_visible != curr_visible)
{
gdouble ratio = (curr.z - GIMP_TRANSFORM_NEAR_Z) / (curr.z - next.z);
t_vertices[(*n_t_vertices)++] =
(GimpVector2) { (curr.x + (next.x - curr.x) * ratio) / GIMP_TRANSFORM_NEAR_Z,
(curr.y + (next.y - curr.y) * ratio) / GIMP_TRANSFORM_NEAR_Z };
}
curr = next;
curr_visible = next_visible;
}
}
}