
* camel-sasl-ntlm.c: Implementation of NTLM (aka "Secure Password Authentication") auth, taken from soup. * Makefile.am (libcamel_la_SOURCES, libcamel_la_HEADERS): Add camel-sasl-ntlm. * camel-sasl.c: Add refs to camel-sasl-ntlm. * providers/imap/camel-imap-store.c (try_auth): Use imap_next_word() to skip over the "+ " of the continuation rather than just "resp + 2" since Exchange (incorrectly) returns "+" instead of "+ " for an empty continuation response. svn path=/trunk/; revision=15605
707 lines
23 KiB
C
707 lines
23 KiB
C
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
|
|
/*
|
|
* Copyright 2002 Ximian, Inc. (www.ximian.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include "camel-sasl-ntlm.h"
|
|
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
|
|
CamelServiceAuthType camel_sasl_ntlm_authtype = {
|
|
N_("NTLM / SPA"),
|
|
|
|
N_("This option will connect to a Windows-based server using "
|
|
"NTLM / Secure Password Authentication."),
|
|
|
|
"NTLM",
|
|
TRUE
|
|
};
|
|
|
|
static CamelSaslClass *parent_class = NULL;
|
|
|
|
static GByteArray *ntlm_challenge (CamelSasl *sasl, GByteArray *token, CamelException *ex);
|
|
|
|
static void
|
|
camel_sasl_ntlm_class_init (CamelSaslNTLMClass *camel_sasl_ntlm_class)
|
|
{
|
|
CamelSaslClass *camel_sasl_class = CAMEL_SASL_CLASS (camel_sasl_ntlm_class);
|
|
|
|
parent_class = CAMEL_SASL_CLASS (camel_type_get_global_classfuncs (camel_sasl_get_type ()));
|
|
|
|
/* virtual method overload */
|
|
camel_sasl_class->challenge = ntlm_challenge;
|
|
}
|
|
|
|
CamelType
|
|
camel_sasl_ntlm_get_type (void)
|
|
{
|
|
static CamelType type = CAMEL_INVALID_TYPE;
|
|
|
|
if (type == CAMEL_INVALID_TYPE) {
|
|
type = camel_type_register (
|
|
camel_sasl_get_type (), "CamelSaslNTLM",
|
|
sizeof (CamelSaslNTLM),
|
|
sizeof (CamelSaslNTLMClass),
|
|
(CamelObjectClassInitFunc) camel_sasl_ntlm_class_init,
|
|
NULL, NULL, NULL);
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
#define NTLM_REQUEST "NTLMSSP\x00\x01\x00\x00\x00\x06\x82\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00"
|
|
|
|
#define NTLM_CHALLENGE_NONCE_OFFSET 24
|
|
#define NTLM_CHALLENGE_DOMAIN_OFFSET 48
|
|
#define NTLM_CHALLENGE_DOMAIN_LEN_OFFSET 44
|
|
|
|
#define NTLM_RESPONSE_HEADER "NTLMSSP\x00\x03\x00\x00\x00"
|
|
#define NTLM_RESPONSE_FLAGS "\x82\x01"
|
|
#define NTLM_RESPONSE_BASE_SIZE 64
|
|
#define NTLM_RESPONSE_LM_RESP_OFFSET 12
|
|
#define NTLM_RESPONSE_NT_RESP_OFFSET 20
|
|
#define NTLM_RESPONSE_DOMAIN_OFFSET 28
|
|
#define NTLM_RESPONSE_USER_OFFSET 36
|
|
#define NTLM_RESPONSE_HOST_OFFSET 44
|
|
#define NTLM_RESPONSE_FLAGS_OFFSET 60
|
|
|
|
static void ntlm_calc_response (const guchar key[21],
|
|
const guchar plaintext[8],
|
|
guchar results[24]);
|
|
static void ntlm_lanmanager_hash (const char *password, char hash[21]);
|
|
static void ntlm_nt_hash (const char *password, char hash[21]);
|
|
static void ntlm_set_string (GByteArray *ba, int offset,
|
|
const char *data, int len);
|
|
|
|
static GByteArray *
|
|
ntlm_challenge (CamelSasl *sasl, GByteArray *token, CamelException *ex)
|
|
{
|
|
GByteArray *ret;
|
|
guchar nonce[8], hash[21], lm_resp[24], nt_resp[24];
|
|
|
|
ret = g_byte_array_new ();
|
|
|
|
if (!token || !token->len) {
|
|
g_byte_array_append (ret, NTLM_REQUEST,
|
|
sizeof (NTLM_REQUEST) - 1);
|
|
return ret;
|
|
}
|
|
|
|
memcpy (nonce, token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8);
|
|
ntlm_lanmanager_hash (sasl->service->url->passwd, hash);
|
|
ntlm_calc_response (hash, nonce, lm_resp);
|
|
ntlm_nt_hash (sasl->service->url->passwd, hash);
|
|
ntlm_calc_response (hash, nonce, nt_resp);
|
|
|
|
ret = g_byte_array_new ();
|
|
g_byte_array_set_size (ret, NTLM_RESPONSE_BASE_SIZE);
|
|
memset (ret->data, 0, NTLM_RESPONSE_BASE_SIZE);
|
|
memcpy (ret->data, NTLM_RESPONSE_HEADER,
|
|
sizeof (NTLM_RESPONSE_HEADER) - 1);
|
|
memcpy (ret->data + NTLM_RESPONSE_FLAGS_OFFSET,
|
|
NTLM_RESPONSE_FLAGS, sizeof (NTLM_RESPONSE_FLAGS) - 1);
|
|
|
|
ntlm_set_string (ret, NTLM_RESPONSE_DOMAIN_OFFSET,
|
|
token->data + NTLM_CHALLENGE_DOMAIN_OFFSET,
|
|
atoi (token->data + NTLM_CHALLENGE_DOMAIN_LEN_OFFSET));
|
|
ntlm_set_string (ret, NTLM_RESPONSE_USER_OFFSET,
|
|
sasl->service->url->user,
|
|
strlen (sasl->service->url->user));
|
|
ntlm_set_string (ret, NTLM_RESPONSE_HOST_OFFSET,
|
|
"UNKNOWN", sizeof ("UNKNOWN") - 1);
|
|
ntlm_set_string (ret, NTLM_RESPONSE_LM_RESP_OFFSET,
|
|
lm_resp, sizeof (lm_resp));
|
|
ntlm_set_string (ret, NTLM_RESPONSE_NT_RESP_OFFSET,
|
|
nt_resp, sizeof (nt_resp));
|
|
|
|
sasl->authenticated = TRUE;
|
|
return ret;
|
|
}
|
|
|
|
/* MD4 */
|
|
static void md4sum (const unsigned char *in,
|
|
int nbytes,
|
|
unsigned char digest[16]);
|
|
|
|
/* DES */
|
|
typedef unsigned long DES_KS[16][2]; /* Single-key DES key schedule */
|
|
|
|
static void deskey (DES_KS, unsigned char *, int);
|
|
|
|
static void des (DES_KS, unsigned char *);
|
|
|
|
static void setup_schedule (const guchar *key_56, DES_KS ks);
|
|
|
|
|
|
|
|
#define LM_PASSWORD_MAGIC "\x4B\x47\x53\x21\x40\x23\x24\x25" \
|
|
"\x4B\x47\x53\x21\x40\x23\x24\x25" \
|
|
"\x00\x00\x00\x00\x00"
|
|
|
|
static void
|
|
ntlm_lanmanager_hash (const char *password, char hash[21])
|
|
{
|
|
guchar lm_password [15];
|
|
DES_KS ks;
|
|
int i;
|
|
|
|
for (i = 0; i < 14 && password [i]; i++)
|
|
lm_password [i] = toupper ((unsigned char) password [i]);
|
|
|
|
for (; i < 15; i++)
|
|
lm_password [i] = '\0';
|
|
|
|
memcpy (hash, LM_PASSWORD_MAGIC, 21);
|
|
|
|
setup_schedule (lm_password, ks);
|
|
des (ks, hash);
|
|
|
|
setup_schedule (lm_password + 7, ks);
|
|
des (ks, hash + 8);
|
|
}
|
|
|
|
static void
|
|
ntlm_nt_hash (const char *password, char hash[21])
|
|
{
|
|
unsigned char *buf, *p;
|
|
|
|
p = buf = g_malloc (strlen (password) * 2);
|
|
|
|
while (*password) {
|
|
*p++ = *password++;
|
|
*p++ = '\0';
|
|
}
|
|
|
|
md4sum (buf, p - buf, hash);
|
|
memset (hash + 16, 0, 5);
|
|
|
|
g_free (buf);
|
|
}
|
|
|
|
static void
|
|
ntlm_set_string (GByteArray *ba, int offset, const char *data, int len)
|
|
{
|
|
ba->data[offset ] = ba->data[offset + 2] = len & 0xFF;
|
|
ba->data[offset + 1] = ba->data[offset + 3] = (len >> 8) & 0xFF;
|
|
ba->data[offset + 4] = ba->len & 0xFF;
|
|
ba->data[offset + 5] = (ba->len >> 8) & 0xFF;
|
|
g_byte_array_append (ba, data, len);
|
|
}
|
|
|
|
|
|
#define KEYBITS(k,s) \
|
|
(((k[(s)/8] << ((s)%8)) & 0xFF) | (k[(s)/8+1] >> (8-(s)%8)))
|
|
|
|
/* DES utils */
|
|
/* Set up a key schedule based on a 56bit key */
|
|
static void
|
|
setup_schedule (const guchar *key_56, DES_KS ks)
|
|
{
|
|
guchar key[8];
|
|
int i, c, bit;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
key [i] = KEYBITS (key_56, i * 7);
|
|
|
|
/* Fix parity */
|
|
for (c = bit = 0; bit < 8; bit++)
|
|
if (key [i] & (1 << bit))
|
|
c++;
|
|
if (!(c & 1))
|
|
key [i] ^= 0x01;
|
|
}
|
|
|
|
deskey (ks, key, 0);
|
|
}
|
|
|
|
static void
|
|
ntlm_calc_response (const guchar key[21], const guchar plaintext[8],
|
|
guchar results[24])
|
|
{
|
|
DES_KS ks;
|
|
|
|
memcpy (results, plaintext, 8);
|
|
memcpy (results + 8, plaintext, 8);
|
|
memcpy (results + 16, plaintext, 8);
|
|
|
|
setup_schedule (key, ks);
|
|
des (ks, results);
|
|
|
|
setup_schedule (key + 7, ks);
|
|
des (ks, results + 8);
|
|
|
|
setup_schedule (key + 14, ks);
|
|
des (ks, results + 16);
|
|
}
|
|
|
|
|
|
/*
|
|
* MD4 encoder. (The one everyone else uses is not GPL-compatible;
|
|
* this is a reimplementation from spec.) This doesn't need to be
|
|
* efficient for our purposes, although it would be nice to fix
|
|
* it to not malloc()...
|
|
*/
|
|
|
|
#define F(X,Y,Z) ( ((X)&(Y)) | ((~(X))&(Z)) )
|
|
#define G(X,Y,Z) ( ((X)&(Y)) | ((X)&(Z)) | ((Y)&(Z)) )
|
|
#define H(X,Y,Z) ( (X)^(Y)^(Z) )
|
|
#define ROT(val, n) ( ((val) << (n)) | ((val) >> (32 - (n))) )
|
|
|
|
static void
|
|
md4sum (const unsigned char *in, int nbytes, unsigned char digest[16])
|
|
{
|
|
unsigned char *M;
|
|
guint32 A, B, C, D, AA, BB, CC, DD, X[16];
|
|
int pbytes, nbits = nbytes * 8, i, j;
|
|
|
|
pbytes = (120 - (nbytes % 64)) % 64;
|
|
M = alloca (nbytes + pbytes + 8);
|
|
memcpy (M, in, nbytes);
|
|
memset (M + nbytes, 0, pbytes + 8);
|
|
M[nbytes] = 0x80;
|
|
M[nbytes + pbytes] = nbits & 0xFF;
|
|
M[nbytes + pbytes + 1] = (nbits >> 8) & 0xFF;
|
|
M[nbytes + pbytes + 2] = (nbits >> 16) & 0xFF;
|
|
M[nbytes + pbytes + 3] = (nbits >> 24) & 0xFF;
|
|
|
|
A = 0x67452301;
|
|
B = 0xEFCDAB89;
|
|
C = 0x98BADCFE;
|
|
D = 0x10325476;
|
|
|
|
for (i = 0; i < nbytes + pbytes + 8; i += 64) {
|
|
for (j = 0; j < 16; j++) {
|
|
X[j] = (M[i + j*4]) |
|
|
(M[i + j*4 + 1] << 8) |
|
|
(M[i + j*4 + 2] << 16) |
|
|
(M[i + j*4 + 3] << 24);
|
|
}
|
|
|
|
AA = A;
|
|
BB = B;
|
|
CC = C;
|
|
DD = D;
|
|
|
|
A = ROT (A + F(B, C, D) + X[0], 3);
|
|
D = ROT (D + F(A, B, C) + X[1], 7);
|
|
C = ROT (C + F(D, A, B) + X[2], 11);
|
|
B = ROT (B + F(C, D, A) + X[3], 19);
|
|
A = ROT (A + F(B, C, D) + X[4], 3);
|
|
D = ROT (D + F(A, B, C) + X[5], 7);
|
|
C = ROT (C + F(D, A, B) + X[6], 11);
|
|
B = ROT (B + F(C, D, A) + X[7], 19);
|
|
A = ROT (A + F(B, C, D) + X[8], 3);
|
|
D = ROT (D + F(A, B, C) + X[9], 7);
|
|
C = ROT (C + F(D, A, B) + X[10], 11);
|
|
B = ROT (B + F(C, D, A) + X[11], 19);
|
|
A = ROT (A + F(B, C, D) + X[12], 3);
|
|
D = ROT (D + F(A, B, C) + X[13], 7);
|
|
C = ROT (C + F(D, A, B) + X[14], 11);
|
|
B = ROT (B + F(C, D, A) + X[15], 19);
|
|
|
|
A = ROT (A + G(B, C, D) + X[0] + 0x5A827999, 3);
|
|
D = ROT (D + G(A, B, C) + X[4] + 0x5A827999, 5);
|
|
C = ROT (C + G(D, A, B) + X[8] + 0x5A827999, 9);
|
|
B = ROT (B + G(C, D, A) + X[12] + 0x5A827999, 13);
|
|
A = ROT (A + G(B, C, D) + X[1] + 0x5A827999, 3);
|
|
D = ROT (D + G(A, B, C) + X[5] + 0x5A827999, 5);
|
|
C = ROT (C + G(D, A, B) + X[9] + 0x5A827999, 9);
|
|
B = ROT (B + G(C, D, A) + X[13] + 0x5A827999, 13);
|
|
A = ROT (A + G(B, C, D) + X[2] + 0x5A827999, 3);
|
|
D = ROT (D + G(A, B, C) + X[6] + 0x5A827999, 5);
|
|
C = ROT (C + G(D, A, B) + X[10] + 0x5A827999, 9);
|
|
B = ROT (B + G(C, D, A) + X[14] + 0x5A827999, 13);
|
|
A = ROT (A + G(B, C, D) + X[3] + 0x5A827999, 3);
|
|
D = ROT (D + G(A, B, C) + X[7] + 0x5A827999, 5);
|
|
C = ROT (C + G(D, A, B) + X[11] + 0x5A827999, 9);
|
|
B = ROT (B + G(C, D, A) + X[15] + 0x5A827999, 13);
|
|
|
|
A = ROT (A + H(B, C, D) + X[0] + 0x6ED9EBA1, 3);
|
|
D = ROT (D + H(A, B, C) + X[8] + 0x6ED9EBA1, 9);
|
|
C = ROT (C + H(D, A, B) + X[4] + 0x6ED9EBA1, 11);
|
|
B = ROT (B + H(C, D, A) + X[12] + 0x6ED9EBA1, 15);
|
|
A = ROT (A + H(B, C, D) + X[2] + 0x6ED9EBA1, 3);
|
|
D = ROT (D + H(A, B, C) + X[10] + 0x6ED9EBA1, 9);
|
|
C = ROT (C + H(D, A, B) + X[6] + 0x6ED9EBA1, 11);
|
|
B = ROT (B + H(C, D, A) + X[14] + 0x6ED9EBA1, 15);
|
|
A = ROT (A + H(B, C, D) + X[1] + 0x6ED9EBA1, 3);
|
|
D = ROT (D + H(A, B, C) + X[9] + 0x6ED9EBA1, 9);
|
|
C = ROT (C + H(D, A, B) + X[5] + 0x6ED9EBA1, 11);
|
|
B = ROT (B + H(C, D, A) + X[13] + 0x6ED9EBA1, 15);
|
|
A = ROT (A + H(B, C, D) + X[3] + 0x6ED9EBA1, 3);
|
|
D = ROT (D + H(A, B, C) + X[11] + 0x6ED9EBA1, 9);
|
|
C = ROT (C + H(D, A, B) + X[7] + 0x6ED9EBA1, 11);
|
|
B = ROT (B + H(C, D, A) + X[15] + 0x6ED9EBA1, 15);
|
|
|
|
A += AA;
|
|
B += BB;
|
|
C += CC;
|
|
D += DD;
|
|
}
|
|
|
|
digest[0] = A & 0xFF;
|
|
digest[1] = (A >> 8) & 0xFF;
|
|
digest[2] = (A >> 16) & 0xFF;
|
|
digest[3] = (A >> 24) & 0xFF;
|
|
digest[4] = B & 0xFF;
|
|
digest[5] = (B >> 8) & 0xFF;
|
|
digest[6] = (B >> 16) & 0xFF;
|
|
digest[7] = (B >> 24) & 0xFF;
|
|
digest[8] = C & 0xFF;
|
|
digest[9] = (C >> 8) & 0xFF;
|
|
digest[10] = (C >> 16) & 0xFF;
|
|
digest[11] = (C >> 24) & 0xFF;
|
|
digest[12] = D & 0xFF;
|
|
digest[13] = (D >> 8) & 0xFF;
|
|
digest[14] = (D >> 16) & 0xFF;
|
|
digest[15] = (D >> 24) & 0xFF;
|
|
}
|
|
|
|
|
|
/* Public domain DES implementation from Phil Karn */
|
|
static unsigned long Spbox[8][64] = {
|
|
{ 0x01010400, 0x00000000, 0x00010000, 0x01010404,
|
|
0x01010004, 0x00010404, 0x00000004, 0x00010000,
|
|
0x00000400, 0x01010400, 0x01010404, 0x00000400,
|
|
0x01000404, 0x01010004, 0x01000000, 0x00000004,
|
|
0x00000404, 0x01000400, 0x01000400, 0x00010400,
|
|
0x00010400, 0x01010000, 0x01010000, 0x01000404,
|
|
0x00010004, 0x01000004, 0x01000004, 0x00010004,
|
|
0x00000000, 0x00000404, 0x00010404, 0x01000000,
|
|
0x00010000, 0x01010404, 0x00000004, 0x01010000,
|
|
0x01010400, 0x01000000, 0x01000000, 0x00000400,
|
|
0x01010004, 0x00010000, 0x00010400, 0x01000004,
|
|
0x00000400, 0x00000004, 0x01000404, 0x00010404,
|
|
0x01010404, 0x00010004, 0x01010000, 0x01000404,
|
|
0x01000004, 0x00000404, 0x00010404, 0x01010400,
|
|
0x00000404, 0x01000400, 0x01000400, 0x00000000,
|
|
0x00010004, 0x00010400, 0x00000000, 0x01010004 },
|
|
{ 0x80108020, 0x80008000, 0x00008000, 0x00108020,
|
|
0x00100000, 0x00000020, 0x80100020, 0x80008020,
|
|
0x80000020, 0x80108020, 0x80108000, 0x80000000,
|
|
0x80008000, 0x00100000, 0x00000020, 0x80100020,
|
|
0x00108000, 0x00100020, 0x80008020, 0x00000000,
|
|
0x80000000, 0x00008000, 0x00108020, 0x80100000,
|
|
0x00100020, 0x80000020, 0x00000000, 0x00108000,
|
|
0x00008020, 0x80108000, 0x80100000, 0x00008020,
|
|
0x00000000, 0x00108020, 0x80100020, 0x00100000,
|
|
0x80008020, 0x80100000, 0x80108000, 0x00008000,
|
|
0x80100000, 0x80008000, 0x00000020, 0x80108020,
|
|
0x00108020, 0x00000020, 0x00008000, 0x80000000,
|
|
0x00008020, 0x80108000, 0x00100000, 0x80000020,
|
|
0x00100020, 0x80008020, 0x80000020, 0x00100020,
|
|
0x00108000, 0x00000000, 0x80008000, 0x00008020,
|
|
0x80000000, 0x80100020, 0x80108020, 0x00108000 },
|
|
{ 0x00000208, 0x08020200, 0x00000000, 0x08020008,
|
|
0x08000200, 0x00000000, 0x00020208, 0x08000200,
|
|
0x00020008, 0x08000008, 0x08000008, 0x00020000,
|
|
0x08020208, 0x00020008, 0x08020000, 0x00000208,
|
|
0x08000000, 0x00000008, 0x08020200, 0x00000200,
|
|
0x00020200, 0x08020000, 0x08020008, 0x00020208,
|
|
0x08000208, 0x00020200, 0x00020000, 0x08000208,
|
|
0x00000008, 0x08020208, 0x00000200, 0x08000000,
|
|
0x08020200, 0x08000000, 0x00020008, 0x00000208,
|
|
0x00020000, 0x08020200, 0x08000200, 0x00000000,
|
|
0x00000200, 0x00020008, 0x08020208, 0x08000200,
|
|
0x08000008, 0x00000200, 0x00000000, 0x08020008,
|
|
0x08000208, 0x00020000, 0x08000000, 0x08020208,
|
|
0x00000008, 0x00020208, 0x00020200, 0x08000008,
|
|
0x08020000, 0x08000208, 0x00000208, 0x08020000,
|
|
0x00020208, 0x00000008, 0x08020008, 0x00020200 },
|
|
{ 0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
|
0x00802080, 0x00800081, 0x00800001, 0x00002001,
|
|
0x00000000, 0x00802000, 0x00802000, 0x00802081,
|
|
0x00000081, 0x00000000, 0x00800080, 0x00800001,
|
|
0x00000001, 0x00002000, 0x00800000, 0x00802001,
|
|
0x00000080, 0x00800000, 0x00002001, 0x00002080,
|
|
0x00800081, 0x00000001, 0x00002080, 0x00800080,
|
|
0x00002000, 0x00802080, 0x00802081, 0x00000081,
|
|
0x00800080, 0x00800001, 0x00802000, 0x00802081,
|
|
0x00000081, 0x00000000, 0x00000000, 0x00802000,
|
|
0x00002080, 0x00800080, 0x00800081, 0x00000001,
|
|
0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
|
0x00802081, 0x00000081, 0x00000001, 0x00002000,
|
|
0x00800001, 0x00002001, 0x00802080, 0x00800081,
|
|
0x00002001, 0x00002080, 0x00800000, 0x00802001,
|
|
0x00000080, 0x00800000, 0x00002000, 0x00802080 },
|
|
{ 0x00000100, 0x02080100, 0x02080000, 0x42000100,
|
|
0x00080000, 0x00000100, 0x40000000, 0x02080000,
|
|
0x40080100, 0x00080000, 0x02000100, 0x40080100,
|
|
0x42000100, 0x42080000, 0x00080100, 0x40000000,
|
|
0x02000000, 0x40080000, 0x40080000, 0x00000000,
|
|
0x40000100, 0x42080100, 0x42080100, 0x02000100,
|
|
0x42080000, 0x40000100, 0x00000000, 0x42000000,
|
|
0x02080100, 0x02000000, 0x42000000, 0x00080100,
|
|
0x00080000, 0x42000100, 0x00000100, 0x02000000,
|
|
0x40000000, 0x02080000, 0x42000100, 0x40080100,
|
|
0x02000100, 0x40000000, 0x42080000, 0x02080100,
|
|
0x40080100, 0x00000100, 0x02000000, 0x42080000,
|
|
0x42080100, 0x00080100, 0x42000000, 0x42080100,
|
|
0x02080000, 0x00000000, 0x40080000, 0x42000000,
|
|
0x00080100, 0x02000100, 0x40000100, 0x00080000,
|
|
0x00000000, 0x40080000, 0x02080100, 0x40000100 },
|
|
{ 0x20000010, 0x20400000, 0x00004000, 0x20404010,
|
|
0x20400000, 0x00000010, 0x20404010, 0x00400000,
|
|
0x20004000, 0x00404010, 0x00400000, 0x20000010,
|
|
0x00400010, 0x20004000, 0x20000000, 0x00004010,
|
|
0x00000000, 0x00400010, 0x20004010, 0x00004000,
|
|
0x00404000, 0x20004010, 0x00000010, 0x20400010,
|
|
0x20400010, 0x00000000, 0x00404010, 0x20404000,
|
|
0x00004010, 0x00404000, 0x20404000, 0x20000000,
|
|
0x20004000, 0x00000010, 0x20400010, 0x00404000,
|
|
0x20404010, 0x00400000, 0x00004010, 0x20000010,
|
|
0x00400000, 0x20004000, 0x20000000, 0x00004010,
|
|
0x20000010, 0x20404010, 0x00404000, 0x20400000,
|
|
0x00404010, 0x20404000, 0x00000000, 0x20400010,
|
|
0x00000010, 0x00004000, 0x20400000, 0x00404010,
|
|
0x00004000, 0x00400010, 0x20004010, 0x00000000,
|
|
0x20404000, 0x20000000, 0x00400010, 0x20004010 },
|
|
{ 0x00200000, 0x04200002, 0x04000802, 0x00000000,
|
|
0x00000800, 0x04000802, 0x00200802, 0x04200800,
|
|
0x04200802, 0x00200000, 0x00000000, 0x04000002,
|
|
0x00000002, 0x04000000, 0x04200002, 0x00000802,
|
|
0x04000800, 0x00200802, 0x00200002, 0x04000800,
|
|
0x04000002, 0x04200000, 0x04200800, 0x00200002,
|
|
0x04200000, 0x00000800, 0x00000802, 0x04200802,
|
|
0x00200800, 0x00000002, 0x04000000, 0x00200800,
|
|
0x04000000, 0x00200800, 0x00200000, 0x04000802,
|
|
0x04000802, 0x04200002, 0x04200002, 0x00000002,
|
|
0x00200002, 0x04000000, 0x04000800, 0x00200000,
|
|
0x04200800, 0x00000802, 0x00200802, 0x04200800,
|
|
0x00000802, 0x04000002, 0x04200802, 0x04200000,
|
|
0x00200800, 0x00000000, 0x00000002, 0x04200802,
|
|
0x00000000, 0x00200802, 0x04200000, 0x00000800,
|
|
0x04000002, 0x04000800, 0x00000800, 0x00200002 },
|
|
{ 0x10001040, 0x00001000, 0x00040000, 0x10041040,
|
|
0x10000000, 0x10001040, 0x00000040, 0x10000000,
|
|
0x00040040, 0x10040000, 0x10041040, 0x00041000,
|
|
0x10041000, 0x00041040, 0x00001000, 0x00000040,
|
|
0x10040000, 0x10000040, 0x10001000, 0x00001040,
|
|
0x00041000, 0x00040040, 0x10040040, 0x10041000,
|
|
0x00001040, 0x00000000, 0x00000000, 0x10040040,
|
|
0x10000040, 0x10001000, 0x00041040, 0x00040000,
|
|
0x00041040, 0x00040000, 0x10041000, 0x00001000,
|
|
0x00000040, 0x10040040, 0x00001000, 0x00041040,
|
|
0x10001000, 0x00000040, 0x10000040, 0x10040000,
|
|
0x10040040, 0x10000000, 0x00040000, 0x10001040,
|
|
0x00000000, 0x10041040, 0x00040040, 0x10000040,
|
|
0x10040000, 0x10001000, 0x10001040, 0x00000000,
|
|
0x10041040, 0x00041000, 0x00041000, 0x00001040,
|
|
0x00001040, 0x00040040, 0x10000000, 0x10041000 }
|
|
};
|
|
|
|
#undef F
|
|
#define F(l,r,key){\
|
|
work = ((r >> 4) | (r << 28)) ^ key[0];\
|
|
l ^= Spbox[6][work & 0x3f];\
|
|
l ^= Spbox[4][(work >> 8) & 0x3f];\
|
|
l ^= Spbox[2][(work >> 16) & 0x3f];\
|
|
l ^= Spbox[0][(work >> 24) & 0x3f];\
|
|
work = r ^ key[1];\
|
|
l ^= Spbox[7][work & 0x3f];\
|
|
l ^= Spbox[5][(work >> 8) & 0x3f];\
|
|
l ^= Spbox[3][(work >> 16) & 0x3f];\
|
|
l ^= Spbox[1][(work >> 24) & 0x3f];\
|
|
}
|
|
/* Encrypt or decrypt a block of data in ECB mode */
|
|
static void
|
|
des(ks,block)
|
|
unsigned long ks[16][2]; /* Key schedule */
|
|
unsigned char block[8]; /* Data block */
|
|
{
|
|
unsigned long left,right,work;
|
|
|
|
/* Read input block and place in left/right in big-endian order */
|
|
left = ((unsigned long)block[0] << 24)
|
|
| ((unsigned long)block[1] << 16)
|
|
| ((unsigned long)block[2] << 8)
|
|
| (unsigned long)block[3];
|
|
right = ((unsigned long)block[4] << 24)
|
|
| ((unsigned long)block[5] << 16)
|
|
| ((unsigned long)block[6] << 8)
|
|
| (unsigned long)block[7];
|
|
|
|
/* Hoey's clever initial permutation algorithm, from Outerbridge
|
|
* (see Schneier p 478)
|
|
*
|
|
* The convention here is the same as Outerbridge: rotate each
|
|
* register left by 1 bit, i.e., so that "left" contains permuted
|
|
* input bits 2, 3, 4, ... 1 and "right" contains 33, 34, 35, ... 32
|
|
* (using origin-1 numbering as in the FIPS). This allows us to avoid
|
|
* one of the two rotates that would otherwise be required in each of
|
|
* the 16 rounds.
|
|
*/
|
|
work = ((left >> 4) ^ right) & 0x0f0f0f0f;
|
|
right ^= work;
|
|
left ^= work << 4;
|
|
work = ((left >> 16) ^ right) & 0xffff;
|
|
right ^= work;
|
|
left ^= work << 16;
|
|
work = ((right >> 2) ^ left) & 0x33333333;
|
|
left ^= work;
|
|
right ^= (work << 2);
|
|
work = ((right >> 8) ^ left) & 0xff00ff;
|
|
left ^= work;
|
|
right ^= (work << 8);
|
|
right = (right << 1) | (right >> 31);
|
|
work = (left ^ right) & 0xaaaaaaaa;
|
|
left ^= work;
|
|
right ^= work;
|
|
left = (left << 1) | (left >> 31);
|
|
|
|
/* Now do the 16 rounds */
|
|
F(left,right,ks[0]);
|
|
F(right,left,ks[1]);
|
|
F(left,right,ks[2]);
|
|
F(right,left,ks[3]);
|
|
F(left,right,ks[4]);
|
|
F(right,left,ks[5]);
|
|
F(left,right,ks[6]);
|
|
F(right,left,ks[7]);
|
|
F(left,right,ks[8]);
|
|
F(right,left,ks[9]);
|
|
F(left,right,ks[10]);
|
|
F(right,left,ks[11]);
|
|
F(left,right,ks[12]);
|
|
F(right,left,ks[13]);
|
|
F(left,right,ks[14]);
|
|
F(right,left,ks[15]);
|
|
|
|
/* Inverse permutation, also from Hoey via Outerbridge and Schneier */
|
|
right = (right << 31) | (right >> 1);
|
|
work = (left ^ right) & 0xaaaaaaaa;
|
|
left ^= work;
|
|
right ^= work;
|
|
left = (left >> 1) | (left << 31);
|
|
work = ((left >> 8) ^ right) & 0xff00ff;
|
|
right ^= work;
|
|
left ^= work << 8;
|
|
work = ((left >> 2) ^ right) & 0x33333333;
|
|
right ^= work;
|
|
left ^= work << 2;
|
|
work = ((right >> 16) ^ left) & 0xffff;
|
|
left ^= work;
|
|
right ^= work << 16;
|
|
work = ((right >> 4) ^ left) & 0x0f0f0f0f;
|
|
left ^= work;
|
|
right ^= work << 4;
|
|
|
|
/* Put the block back into the user's buffer with final swap */
|
|
block[0] = right >> 24;
|
|
block[1] = right >> 16;
|
|
block[2] = right >> 8;
|
|
block[3] = right;
|
|
block[4] = left >> 24;
|
|
block[5] = left >> 16;
|
|
block[6] = left >> 8;
|
|
block[7] = left;
|
|
}
|
|
|
|
/* Key schedule-related tables from FIPS-46 */
|
|
|
|
/* permuted choice table (key) */
|
|
static unsigned char pc1[] = {
|
|
57, 49, 41, 33, 25, 17, 9,
|
|
1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27,
|
|
19, 11, 3, 60, 52, 44, 36,
|
|
|
|
63, 55, 47, 39, 31, 23, 15,
|
|
7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29,
|
|
21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
/* number left rotations of pc1 */
|
|
static unsigned char totrot[] = {
|
|
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
|
|
};
|
|
|
|
/* permuted choice key (table) */
|
|
static unsigned char pc2[] = {
|
|
14, 17, 11, 24, 1, 5,
|
|
3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8,
|
|
16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55,
|
|
30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53,
|
|
46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/* End of DES-defined tables */
|
|
|
|
|
|
/* bit 0 is left-most in byte */
|
|
static int bytebit[] = {
|
|
0200,0100,040,020,010,04,02,01
|
|
};
|
|
|
|
|
|
/* Generate key schedule for encryption or decryption
|
|
* depending on the value of "decrypt"
|
|
*/
|
|
static void
|
|
deskey(k,key,decrypt)
|
|
DES_KS k; /* Key schedule array */
|
|
unsigned char *key; /* 64 bits (will use only 56) */
|
|
int decrypt; /* 0 = encrypt, 1 = decrypt */
|
|
{
|
|
unsigned char pc1m[56]; /* place to modify pc1 into */
|
|
unsigned char pcr[56]; /* place to rotate pc1 into */
|
|
register int i,j,l;
|
|
int m;
|
|
unsigned char ks[8];
|
|
|
|
for (j=0; j<56; j++) { /* convert pc1 to bits of key */
|
|
l=pc1[j]-1; /* integer bit location */
|
|
m = l & 07; /* find bit */
|
|
pc1m[j]=(key[l>>3] & /* find which key byte l is in */
|
|
bytebit[m]) /* and which bit of that byte */
|
|
? 1 : 0; /* and store 1-bit result */
|
|
}
|
|
for (i=0; i<16; i++) { /* key chunk for each iteration */
|
|
memset(ks,0,sizeof(ks)); /* Clear key schedule */
|
|
for (j=0; j<56; j++) /* rotate pc1 the right amount */
|
|
pcr[j] = pc1m[(l=j+totrot[decrypt? 15-i : i])<(j<28? 28 : 56) ? l: l-28];
|
|
/* rotate left and right halves independently */
|
|
for (j=0; j<48; j++){ /* select bits individually */
|
|
/* check bit that goes to ks[j] */
|
|
if (pcr[pc2[j]-1]){
|
|
/* mask it in if it's there */
|
|
l= j % 6;
|
|
ks[j/6] |= bytebit[l] >> 2;
|
|
}
|
|
}
|
|
/* Now convert to packed odd/even interleaved form */
|
|
k[i][0] = ((long)ks[0] << 24)
|
|
| ((long)ks[2] << 16)
|
|
| ((long)ks[4] << 8)
|
|
| ((long)ks[6]);
|
|
k[i][1] = ((long)ks[1] << 24)
|
|
| ((long)ks[3] << 16)
|
|
| ((long)ks[5] << 8)
|
|
| ((long)ks[7]);
|
|
}
|
|
}
|